Modulation of voltage-dependent calcium channels by G proteins
Gerald W Zamponi* and Terry P Snutch†

Voltage-gated calcium channels are found in all excitable cells, in which they regulate many important physiological functions, including excitability, gene transcription, muscle contraction, and neurotransmitter and hormone release. The differential modulation of calcium channels by intracellular second messengers constitutes a key mechanism for controlling calcium influx. Recent advances have provided important clues to the underlying molecular mechanisms involved in the inhibition of N-type and P/Q-type calcium channels by a membrane-delimited G protein-dependent pathway.

Addresses
*Department of Pharmacology and Therapeutics, University of Calgary, Calgary T2N 4N1, Canada; e-mail: zamponi@acs.ucalgary.ca
†Biotechnology Laboratory, Room 237 – Westbrook Building, 6174 University Boulevard, University of British Columbia, Vancouver, V6T 1Z3 Canada; e-mail: snutch@zoology.ubc.ca

Current Opinion in Neurobiology 1996, 8:351–356
http://biomednet.com/elecref/0959438800600351
© Current Biology Ltd ISSN 0959-4388

Abbreviations
AID α₁ interaction domain
GABA γ-aminobutyric acid
PKC protein kinase C

Introduction
Nearly two decades ago, Dunlap and Fischbach [1] first reported the rapid inhibition of calcium currents in chick dorsal root ganglia (DRG) neurons by noradrenaline and serotonin. In the intervening years, many hormones and neurotransmitters, acting via seven transmembrane G-protein-coupled receptors (including muscarinic acetylcholine, GABA, opioid, somatostatin, prostaglandin, adrenergic and adenosine receptors), have all been linked to the inhibition of native calcium currents ([2–12]; reviewed in [13]).

There are a number of defining characteristics common to the rapid, transmitter-induced inhibition of high-threshold calcium currents. First, the activation of G-protein-coupled receptors results in the reduction of peak current amplitude, which is accompanied by an apparent slowing of activation and inactivation kinetics. Second, treatment with pertussis toxin abolishes transmitter-induced inhibition in most cases. In many neuronal and endocrine preparations, inhibition is predominantly linked to the activation of the Gαq class of heterotrimeric G-proteins, although in some instances Gαi and Gq have also been implicated (see, for example, [3–9,14–18]). Third, calcium current inhibition appears to occur via a membrane-delimited pathway rather than via diffusible cytoplasmic messengers ([19]; reviewed in [13]). Finally, membrane delimited G-protein-dependent inhibition is strongly voltage dependent and can be temporarily relieved by the application of strong depolarizations that result in an apparent prepulse-dependent facilitation (a voltage-dependent unblock of the channel (see, for example, [5,6,20]).

At the single-channel level, it has been proposed that G-protein-dependent inhibited channels are less likely ('reluctant') to open in response to membrane depolarization [6]. Within this proposed framework, strong membrane depolarizations may mediate a transition from the 'reluctant' (G-protein inhibited) to a 'willing' (noninhibited) gating state [5,6,12,13,20,21]. On the basis of the independence of the prepulse effect on neurotransmitter concentration, it has been suggested that the prepulse might induce a conformational change in the channel and thus a change in gating behavior that does not involve the complete unbinding of the G protein [5]. In contrast, others have proposed that the prepulse might mediate a complete physical dissociation of the G protein(s) from the channel, and that recovery from facilitation over time may be due to a reassociation of the channel with the G protein(s) (reviewed in [13]). The exact stoichiometry underlying G-protein inhibition and recovery from the prepulse effect has been the subject of some discussion. Models have been proposed in which one, two or four G-protein molecules interact simultaneously with the channel complex [12,20,21].

Which types of calcium channels are inhibited by G proteins?
Electrophysiological and pharmacological characterizations define multiple classes of native calcium channels: T, N, L, P/Q and R types (reviewed in [22,23]). In most neurons, the Conus geographus toxin ω-conotoxin GVIA blocks the G-protein-sensitive current component, indicating that N-type channels represent a major target for inhibition [13]. In addition, P/Q-type channels are inhibited by a variety of transmitters, including opioids, GABA and somatostatin [11]. In both native cells and exogenous expression systems, N-type currents are inhibited to a significantly greater extent than P/Q-type currents [24–26]. Because both N-type and P/Q-type calcium channels mediate neurotransmission at many central and peripheral synapses [23], their differential modulation by G proteins suggests that these channels may make unique contributions to neurotransmission.
Biochemical interaction of the $G_{\beta\gamma}$ complex with non-L-type calcium channel α_1 subunits. Activation of heterotrimeric G-protein releases $G_{\beta\gamma}$, which directly binds to the α_1 subunit domain I-II cytoplasmic linker \cite{40**,41**} and to 38 amino acid region in the carboxyl terminus \cite{32**}. Functional analyses examining chimeric channels also implicate domain I and possibly the amino terminus as contributing to G-protein-dependent modulation \cite{1264}. Within the domain I-II linker, $G_{\beta\gamma}$ binds to two separate regions, one overlapping the site of interaction of the α_1 subunit with the calcium channel β subunit (i.e. the AID site) and a second downstream site \cite{40**,41**}. The PKC-dependent phosphorylation of a site within the first $G_{\beta\gamma}$ binding region (P') attenuates G-protein-dependent inhibition \cite{40**}.

Biochemical studies show that neuronal calcium channels are heteroligomeric complexes composed of α_1, $\alpha_2\delta$ and β subunits. Molecular cloning has identified nine calcium channel α_1 subunits genes (α_{1A}-α_{1H} and α_{1S}), four β subunit genes (β_1-β_4) and a single gene encoding an $\alpha_2\delta$ subunit (reviewed in \cite{27,28} and also see \cite{29**}). In most instances, the pore-forming α_1 subunits have been assigned to a native calcium current counterpart: α_{1A} encodes P/Q-type channels, α_{1B} encodes an N-type calcium channel, α_{1C}, α_{1D} and α_{1S} all encode L-type channels, and α_{1E} constitutes a novel channel that exhibits some similarities to both high-threshold and low-threshold channels. The most recently identified, α_{1G} and α_{1H}, have been shown to encode two different isoforms of T-type calcium channels \cite{29**}. Exogenous expression of cloned calcium channels reveals that G-protein activation selectively modulates α_{1A} and α_{1B} in a manner identical to that for native P/Q-type and N-type currents, respectively \cite{25*,26*,30*,31*}, whereas α_{1C} L-type currents do not exhibit G-protein sensitivity \cite{25*,26*}. In contrast, some studies suggest that α_{1E} currents can be inhibited by G proteins but in others inhibition only occurs in the absence of a coexpressed calcium channel β subunit \cite{50*,51*,52,53}. Because α_{1E} channels contain high affinity β-subunit binding site(s) and are modulated by β-subunit coexpression, the physiological significance of these results remains to be determined.

$G_{\beta\gamma}$ subunits inhibit neuronal calcium channels

Over the years, a large number of studies utilizing a variety of approaches including the exogenous expression of G_{α} subunits and the inhibition of $G_{\beta\gamma}$ subunits with antisense oligonucleotides and antibodies have lead to the notion that G_{α_0} and/or G_{α_3} subunits are responsible for calcium channel inhibition (reviewed in \cite{34}); however,
two recent studies [35**,36**] show that in the absence of agonist, the coexpression of Gβγ subunits but not Gα mimics the transmitter-induced inhibition of N- and P/Q-type currents. All Gβγ combinations tested (Gβ1γ2, Gβ1γ3, Gβ1γ7) were equally effective and could account for all agonist induced modulatory properties including: kinetic slowing, reduced peak current magnitude and prepulse-dependent facilitation. Although Gβγ subunits can clearly mimic the effects of receptor-mediated calcium channel inhibition, it remains to be demonstrated whether Gα subunits released from the heterotrimeric G-protein complex are inert or whether they have effects on other aspects of channel modulation.

Gβγ subunits directly target the calcium channel α1 subunit

The first clue that the calcium channel α1 subunit itself is the target of G-protein interaction comes from studies in which antisense oligonucleotides against the calcium channel β subunit enhance the G-protein-dependent inhibition of native N-type currents [37]. In support of this, omission of the calcium channel β subunit results in an increase in the opioid-induced inhibition of exogenous α1A/P/Q-type currents [25*]. The result suggests both that the α1 subunit is the target of G-protein interaction and that the β subunit antagonizes G-protein action. Because the calcium channel β subunit has been shown to bind to the calcium channel domain I–II linker [38], and the α1A, α1B and α1E I–II linkers also contain a putative consensus binding motif for Gβγ binding (QXXER) [39], this ~140 amino acid region has become a target for intensive investigation.

Two groups have recently demonstrated the direct binding of radiolabeled Gβγ to fusion proteins against the α1A and α1B I–II linkers [40**,41**]. There was no apparent binding of Gαγ/Gαα subunits; furthermore, using different approaches, both groups found that the I–II linker contains two distinct binding sites for Gβγ (Figure 1). Of particular note, the region of the I–II linker that binds the calcium channel β subunit (AID site) overlaps with one of the two I–II linker Gβγ binding sites, suggesting a possible mechanism of allosteric hindrance underlying the antagonistic action of the calcium channel β subunit on G-protein action [25*,37]. Mutational analysis of the α1A AID site identified QQR–L–GY (single letter amino acid code) as one of the motifs required for Gβγ binding. Interestingly, although the R307E mutation in the AID site alone affects Gβγ binding and channel modulation by GTPγS, a similar alteration in the entire I–II linker does not disrupt binding. This suggests that both the AID and downstream Gβγ sites make distinct contributions to channel regulation by Gβγ. Two other studies examined chimeric channels and point mutations in the I–II linker and similarly found strong evidence that the domain I–II linker makes functional contributions to the G-protein-dependent modulation of N- and P/Q-type channels [31*,42*].

Is the domain I–II linker the only region involved in G-protein modulation? Two studies [26*,33*] dispute the notion that the calcium channel domain I–II linker contributes to G-protein modulation. Instead, using chimeric α1 subunits, the authors conclude that other regions, specifically domain I and the carboxyl terminus but not the domain I–II linker, are crucial targets for G-protein modulation. The biochemical evidence for a further Gβγ site in the carboxyl terminus of α1A, α1B and α1E is convincing [33*]. Together with the notion that two separate regions of the domain I–II linker may contribute to the binding of Gβγ to the calcium channel α1 subunit [40**,41**], the existence of multiple binding sites might provide a basis for the lack of an antagonistic effect of certain I–II linker point mutations on G-protein inhibition. It is possible that the destabilization of only one Gβγ microbinding site may only partially abolish Gβγ action; furthermore, G-protein action is likely to involve two steps: first, the binding of Gβγ and second, the translation of binding into a change in the gating properties of the channel. In this scenario, the domain I and carboxyl regions [26*,33*] may also identify crucial structural components of this translation machinery.

Stoichiometric aspects of G-protein inhibition

The stoichiometry of the interaction between Gβγ subunits and the calcium channel during reinhibition after a strong depolarizing prepulse has recently been investigated with purified Gβγ subunits and reconstituted N-type channels [43**]. If, as previously proposed [5], prepulses result in a conformational change in the channel, then the reination kinetics should be independent of the Gβγ concentration; however, if one or more G proteins dissociate from the channel, then reinhibition should be concentration dependent. The inclusion of purified Gβγ in the patch pipette showed that the inverse of the prepulse recovery time constant, τ, was linearly dependent on Gβγ concentration, suggesting complete physical dissociation of a single Gβγ molecule during the prepulse, and a 1:1 reassociation reaction between Gβγ and the calcium channel after the prepulse [43**] (Figure 2). The result is consistent with models suggesting the involvement of a single G protein interacting with the calcium channel complex [21]. The results are also consistent with recent single-channel measurements of the mechanism of G-protein modulation of transiently expressed α1B N-type calcium channels [44**]. In this study, the physiological effects of G-protein binding were entirely attributable to an increase in the first latency to (and thus a 'reluctance' of) channel opening upon G-protein binding. The first latency is introduced by the domain I and carboxyl regions [26*,33*] may also identify crucial structural components of this translation machinery.

Upon repolarization, the channels re-enter the closed state ("willing") and reassociate with the G protein in a bimolecular fashion.
Conclusions

We have recently learned much concerning the molecular and biophysical mechanisms of N-type and P/Q-type calcium channel modulation mediated through the direct interaction of G_{P} subunits; however, in intact cells, it is clear that many types of signaling molecules and pathways act in concert to regulate calcium entry; for example, the activation of protein kinase C (PKC) results in a reduced ability of N-type channels to undergo subsequent G-protein-dependent downregulation [4,45,46]. In a recent study, this cross-talk between signaling pathways was proposed to derive from the PKG-dependent phosphorylation of sites within the I-II linker that bind G_{P} [40*]; furthermore, a recent study by Stanley and Mrocznik [47*] suggests that syntainx is required for G-protein-dependent modulation. Because syntaxin has been shown to directly bind to the domain II–III linker [48], these results suggest that both the domain I–II and II–III linkers and the proteins that bind to them may all be functionally coupled; for example, the binding of syntaxin is in turn antagonized by the PKG-dependent phosphorylation of sites in the calcium channel II–III linker [49*]. Together with previous reports that N-type calcium channel gating is altered upon coexpression of syntaxin [50], these observations suggest a highly dynamic interaction between calcium influx and subsequent neurotransmitter release.

Acknowledgements

We thank Mary Gilbert for help in preparing Figure 1. TP South is supported by a research grant from the Medical Research Council (MRC) of Canada and is an MRC Scientist. GW Zamponi is supported by a research grant from the MRC and by scholarships from the MRC and the Alberta Heritage Foundation for Medical Research.
References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- **of outstanding interest

The authors identify Gp₃₂ binding in the α₁C I–II linker and in a 38-amino-acid region in the carboxyl terminus. Functional expression shows that M2 muscarinic receptor-induced inhibition is almost completely attenuated by β-subunit coexpression. Insertion of the α₁C I–II linker into α₁E results in currents sensitive to G-protein activation whereas replacement of the α₁E carboxyl terminus with that from α₁G results in G-protein insensitivity and implicates the carboxy terminus as a functional regulator.

The authors demonstrate the direct binding of Gb₂ to the domain I–II linkers of α₁A, α₁B, and α₁C and not to α₁G. Similar to α₁A, α₁B, and α₁C, Gb₂ binds to the domain I–II linker and prevents Gα₃₂ binding and G-protein modulation by GTPγS.

A peptide containing the adenyl cyclase type 2 consensus sequence for Gs and human embryonic kidney (HEK) cells stably expressing N-type channels, the authors examine the kinetics of the decay from pre-pulse-induced facilitation. The time course for the recovery from facilitation attenuates in a monophasic manner and the inverse of the time constant for recovery is shown to depend linearly on the concentration of Gβγ. The data are consistent with a single Gβγ dissociating from the channel during the pre-pulse and with a single Gβγ reassociating during recovery from facilitation. The data do not fit previous models involving proposed channel conformational changes or the binding of multiple G-proteins.

Single channel analysis of N-type currents expressed in HEK cells demonstrates that the only effect of activation of M2 muscarinic receptor is to increase the first latency tenfold following membrane depolarization. The observed delay to first opening is in contrast to previous proposals suggesting that G proteins reduce unitary current or alter multipe gaiting properties.

43. Swartz KJ, Merritt A, Bean BP: **Protein kinase C modulates glutamate receptor inhibition of Ca²⁺ channels and synaptic transmission.** Nature 1993, 361:165-168.

